Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
1.
iScience ; 27(4): 109591, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38632988

RESUMO

Targeting cancer metabolism to limit cellular energy and metabolite production is an attractive therapeutic approach. Here, we developed analogs of the bisbiguanide, alexidine, to target lung cancer cell metabolism and assess a structure-activity relationship (SAR). The SAR led to the identification of two analogs, AX-4 and AX-7, that limit cell growth via G1/G0 cell-cycle arrest and are tolerated in vivo with favorable pharmacokinetics. Mechanistic evaluation revealed that AX-4 and AX-7 induce potent mitochondrial defects; mitochondrial cristae were deformed and the mitochondrial membrane potential was depolarized. Additionally, cell metabolism was rewired, as indicated by reduced oxygen consumption and mitochondrial ATP production, with an increase in extracellular lactate. Importantly, AX-4 and AX-7 impacted overall cell behavior, as these compounds reduced collective cell invasion. Taken together, our study establishes a class of bisbiguanides as effective mitochondria and cell invasion disrupters, and proposes bisbiguanides as promising approaches to limiting cancer metastasis.

2.
Cell Rep ; 43(3): 113948, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483908

RESUMO

Identifying individual functional B cell receptors (BCRs) is common, but two-dimensional analysis of B cell frequency versus BCR potency would delineate both quantity and quality of antigen-specific memory B cells. We efficiently determine quantitative BCR neutralizing activities using a single-cell-derived antibody supernatant analysis (SCAN) workflow and develop a frequency-potency algorithm to estimate B cell frequencies at various neutralizing activity or binding affinity cutoffs. In an HIV-1 fusion peptide (FP) immunization study, frequency-potency curves elucidate the quantity and quality of FP-specific immunoglobulin G (IgG)+ memory B cells for different animals, time points, and antibody lineages at single-cell resolution. The BCR neutralizing activities are mainly determined by their affinities to soluble envelope trimer. Frequency analysis definitively demonstrates dominant neutralizing antibody lineages. These findings establish SCAN and frequency-potency analyses as promising approaches for general B cell analysis and monoclonal antibody (mAb) discovery. They also provide specific rationales for HIV-1 FP-directed vaccine optimization.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Animais , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Imunoglobulina G , Células B de Memória
3.
J Clin Invest ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530357

RESUMO

Despite widespread utilization of immunotherapy, challenge to treat immune-cold tumors needs to be resolved. Multiomic analyses and experimental validation identified the OTUD4-CD73 proteolytic axis as a promising target in treating immune-suppressive triple negative breast cancer (TNBC). Mechanistically, deubiquitylation of CD73 by OTUD4 counteracted its ubiquitylation by TRIM21, resulting in CD73 stabilization that inhibits tumor immune responses. We further demonstrated the importance of TGF-ß signaling for orchestrating the OTUD4-CD73 proteolytic axis within tumor cells. Spatial transcriptomics profiling discovered spatially resolved features of interacting malignant and immune cells pertaining to expression levels of OTUD4 and CD73. In addition, ST80, a newly developed inhibitor, specifically disrupted proteolytic interaction between CD73 and OTUD4, leading to reinvigoration of cytotoxic CD8+ T cell activities. In preclinical models of TNBC, ST80 treatment sensitized refractory tumors to anti-PD-L1 therapy. Collectively, our findings uncover a novel strategy for targeting immunosuppressive OTUD4-CD73 proteolytic axis in treating immune-suppressive breast cancers with the inhibitor ST80.

4.
PLoS One ; 19(2): e0293548, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359047

RESUMO

RNA sequencing and genetic data support spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) as putative targets to be modulated for Alzheimer's disease (AD) therapy. FCER1G is a component of Fc receptor complexes that contain an immunoreceptor tyrosine-based activation motif (ITAM). SYK interacts with the Fc receptor by binding to doubly phosphorylated ITAM (p-ITAM) via its two tandem SH2 domains (SYK-tSH2). Interaction of the FCER1G p-ITAM with SYK-tSH2 enables SYK activation via phosphorylation. Since SYK activation is reported to exacerbate AD pathology, we hypothesized that disruption of this interaction would be beneficial for AD patients. Herein, we developed biochemical and biophysical assays to enable the discovery of small molecules that perturb the interaction between the FCER1G p-ITAM and SYK-tSH2. We identified two distinct chemotypes using a high-throughput screen (HTS) and orthogonally assessed their binding. Both chemotypes covalently modify SYK-tSH2 and inhibit its interaction with FCER1G p-ITAM, however, these compounds lack selectivity and this limits their utility as chemical tools.


Assuntos
Proteínas Tirosina Quinases , Domínios de Homologia de src , Humanos , Proteínas Tirosina Quinases/metabolismo , Motivo de Ativação do Imunorreceptor Baseado em Tirosina , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Quinase Syk/metabolismo , Fosforilação , Receptores Fc/metabolismo , Precursores Enzimáticos/metabolismo
5.
J Mol Cell Biol ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968137

RESUMO

The transforming growth factor-beta (TGFß) signaling pathway plays crucial roles in the establishment of an immunosuppressive tumor microenvironment, making anti-TGFß agents a significant area of interest in cancer immunotherapy. However, the clinical translation of current anti-TGFß agents that target upstream cytokines and receptors remains challenging. Therefore, the development of small-molecule inhibitors specifically targeting SMAD4, the downstream master regulator of the TGFß pathway, would offer an alternative approach with significant therapeutic potential for anti-TGF-ß signaling. In this study, we present the development of a cell lysate-based multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) 1536-well plate format. This assay enables simultaneous monitoring of the protein‒protein interaction between SMAD4 and SMAD3, as well as the protein‒DNA interaction between SMADs and their consensus DNA-binding motif. The multiplexed TR-FRET assay exhibits high sensitivity, allowing the dynamic analysis of the SMAD4-SMAD3-DNA complex at single-amino acid resolution. Moreover, the multiplexed uHTS assay demonstrates robustness for screening small-molecule inhibitors. Through a pilot screening of an FDA-approved bioactive compound library, we identified gambogic acid and gambogenic acid as potential hit compounds. These proof-of-concept findings underscore the utility of our optimized multiplexed TR-FRET platform for large-scale screening to discover small-molecule inhibitors that target the SMAD4-SMAD3-DNA complex as novel anti-TGFß signaling agents.

6.
ACS Med Chem Lett ; 14(10): 1338-1343, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849531

RESUMO

Cystic fibrosis (CF) is an autosomal genetic disorder caused by disrupted anion transport in epithelial cells lining tissues in the human airways and digestive system. While cystic fibrosis transmembrane conductance regulator (CFTR) modulator compounds have provided transformative improvement in CF respiratory function, certain patients exhibit marginal clinical benefit or detrimental effects or have a form of the disease not approved or unlikely to respond using CFTR modulation. We tested hit compounds from a 300,000-drug screen for their ability to augment CFTR transepithelial transport alone or in combination with the FDA-approved CFTR potentiator ivacaftor (VX-770). A subsequent SAR campaign led us to a class of 7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines that in combination with VX-770 rescued function of G551D mutant CFTR channels to approximately 400% above the activity of VX-770 alone and to nearly wild-type CFTR levels in the same Fischer rat thyroid model system.

7.
J Biol Chem ; 299(12): 105382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866628

RESUMO

Proteomic studies have identified moesin (MSN), a protein containing a four-point-one, ezrin, radixin, moesin (FERM) domain, and the receptor CD44 as hub proteins found within a coexpression module strongly linked to Alzheimer's disease (AD) traits and microglia. These proteins are more abundant in Alzheimer's patient brains, and their levels are positively correlated with cognitive decline, amyloid plaque deposition, and neurofibrillary tangle burden. The MSN FERM domain interacts with the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) and the cytoplasmic tail of CD44. Inhibiting the MSN-CD44 interaction may help limit AD-associated neuronal damage. Here, we investigated the feasibility of developing inhibitors that target this protein-protein interaction. We have employed structural, mutational, and phage-display studies to examine how CD44 binds to the FERM domain of MSN. Interestingly, we have identified an allosteric site located close to the PIP2 binding pocket that influences CD44 binding. These findings suggest a mechanism in which PIP2 binding to the FERM domain stimulates CD44 binding through an allosteric effect, leading to the formation of a neighboring pocket capable of accommodating a receptor tail. Furthermore, high-throughput screening of a chemical library identified two compounds that disrupt the MSN-CD44 interaction. One compound series was further optimized for biochemical activity, specificity, and solubility. Our results suggest that the FERM domain holds potential as a drug development target. Small molecule preliminary leads generated from this study could serve as a foundation for additional medicinal chemistry efforts with the goal of controlling microglial activity in AD by modifying the MSN-CD44 interaction.


Assuntos
Doença de Alzheimer , Ligação Proteica , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Domínios FERM , Receptores de Hialuronatos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteômica
8.
J Med Chem ; 66(21): 14434-14446, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37874947

RESUMO

Tricyclic tetrahydroquinolines (THQs) have been repeatedly reported as hits across a diverse range of high-throughput screening (HTS) campaigns. The activities of these compounds, however, are likely due to reactive byproducts that interfere with the assay. As a lesser studied class of pan-assay interference compounds, the mechanism by which fused THQs react with protein targets remains largely unknown. During HTS follow-up, we characterized the behavior and stability of several fused tricyclic THQs. We synthesized key analogues to pinpoint the cyclopentene ring double bond as a source of reactivity of fused THQs. We found that these compounds degrade in solution under standard laboratory conditions in days. Importantly, these observations make it likely that fused THQs, which are ubiquitously found within small molecule screening libraries, are unlikely the intact parent compounds. We urge deprioritization of tricylic THQ hits in HTS follow-up and caution against the investment of resources to follow-up on these problematic compounds.


Assuntos
Ensaios de Triagem em Larga Escala , Quinolinas , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Quinolinas/química , Bioensaio
9.
Pharm Res ; 40(9): 2133-2146, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704893

RESUMO

PURPOSE: Although high-dose, multiagent chemotherapy has improved leukemia survival rates, treatment outcomes remain poor in high-risk subsets, including acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) in infants. The development of new, more effective therapies for these patients is therefore an urgent, unmet clinical need. METHODS: The dual MERTK/FLT3 inhibitor MRX-2843 and BCL-2 family protein inhibitors were screened in high-throughput against a panel of AML and MLL-rearranged precursor B-cell ALL (infant ALL) cell lines. A neural network model was built to correlate ratiometric drug synergy and target gene expression. Drugs were loaded into liposomal nanocarriers to assess primary AML cell responses. RESULTS: MRX-2843 synergized with venetoclax to reduce AML cell density in vitro. A neural network classifier based on drug exposure and target gene expression predicted drug synergy and growth inhibition in AML with high accuracy. Combination monovalent liposomal drug formulations delivered defined drug ratios intracellularly and recapitulated synergistic drug activity. The magnitude and frequency of synergistic responses were both maintained and improved following drug formulation in a genotypically diverse set of primary AML bone marrow specimens. CONCLUSIONS: We developed a nanoscale combination drug formulation that exploits ectopic expression of MERTK tyrosine kinase and dependency on BCL-2 family proteins for leukemia cell survival in pediatric AML and infant ALL cells. We demonstrate ratiometric drug delivery and synergistic cell killing in AML, a result achieved by a systematic, generalizable approach of combination drug screening and nanoscale formulation that may be extended to other drug pairs or diseases in the future.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-bcl-2 , Criança , Lactente , Humanos , c-Mer Tirosina Quinase , Composição de Medicamentos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Apoptose , Tirosina Quinase 3 Semelhante a fms/farmacologia , Tirosina Quinase 3 Semelhante a fms/uso terapêutico
10.
bioRxiv ; 2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37547005

RESUMO

RNA sequencing and genetic data support spleen tyrosine kinase (SYK) and high affinity immunoglobulin epsilon receptor subunit gamma (FCER1G) as putative targets to be modulated for Alzheimer's disease (AD) therapy. FCER1G is a component of Fc receptor complexes that contain an immunoreceptor tyrosine-based activation motif (ITAM). SYK interacts with the Fc receptor by binding to doubly phosphorylated ITAM (p-ITAM) via its two tandem SH2 domains (SYK-tSH2). Interaction of the FCER1G p-ITAM with SYK-tSH2 enables SYK activation via phosphorylation. Since SYK activation is reported to exacerbate AD pathology, we hypothesized that disruption of this interaction would be beneficial for AD patients. Herein, we developed biochemical and biophysical assays to enable the discovery of small molecules that perturb the interaction between the FCER1G p-ITAM and SYK-tSH2. We identified two distinct chemotypes using a high-throughput screen (HTS) and orthogonally assessed their binding. Both chemotypes covalently modify SYK-tSH2 and inhibit its interaction with FCER1G p-ITAM.

11.
J Control Release ; 361: 470-482, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37543290

RESUMO

Advances in multiagent chemotherapy have led to recent improvements in survival for patients with acute lymphoblastic leukemia (ALL); however, a significant fraction do not respond to frontline chemotherapy or later relapse with recurrent disease, after which long-term survival rates remain low. To develop new, effective treatment options for these patients, we conducted a series of high-throughput combination drug screens to identify chemotherapies that synergize in a lineage-specific manner with MRX-2843, a small molecule dual MERTK and FLT3 kinase inhibitor currently in clinical testing for treatment of relapsed/refractory leukemias and solid tumors. Using experimental and computational approaches, we found that MRX-2843 synergized strongly-and in a ratio-dependent manner-with vincristine to inhibit both B-ALL and T-ALL cell line expansion. Based on these findings, we developed multiagent lipid nanoparticle formulations of these drugs that not only delivered defined drug ratios intracellularly in T-ALL, but also improved anti-leukemia activity following drug encapsulation. Synergistic and additive interactions were recapitulated in primary T-ALL patient samples treated with MRX-2843 and vincristine nanoparticle formulations, suggesting their clinical relevance. Moreover, the nanoparticle formulations reduced disease burden and prolonged survival in an orthotopic murine xenograft model of early thymic precursor T-ALL (ETP-ALL), with both agents contributing to therapeutic activity in a dose-dependent manner. In contrast, nanoparticles containing MRX-2843 alone were ineffective in this model. Thus, MRX-2843 increased the sensitivity of ETP-ALL cells to vincristine in vivo. In this context, the additive particles, containing a higher dose of MRX-2843, provided more effective disease control than the synergistic particles. In contrast, particles containing an even higher, antagonistic ratio of MRX-2843 and vincristine were less effective. Thus, both the drug dose and the ratio-dependent interaction between MRX-2843 and vincristine significantly impacted therapeutic activity in vivo. Together, these findings present a systematic approach to high-throughput combination drug screening and multiagent drug delivery that maximizes the therapeutic potential of combined MRX-2843 and vincristine in T-ALL and describe a novel translational agent that could be used to enhance therapeutic responses to vincristine in patients with T-ALL. This broadly generalizable approach could also be applied to develop other constitutively synergistic combination products for the treatment of cancer and other diseases.


Assuntos
Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Animais , Camundongos , Vincristina/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia de Células T/tratamento farmacológico , Ciclo Celular , Inibidores de Proteínas Quinases/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
12.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398244

RESUMO

The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that likely contribute to unique growth properties and therapeutic susceptibilities. Despite this, pre-clinical discovery strategies designed to exploit invasive phenotypes are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early invasion phenotypes in the two most prominent molecular subtypes, TP53 and LKB1, of KRAS-driven lung adenocarcinoma (LUAD). By combining live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix with RNA transcriptome profiling, we identified the LKB1-specific upregulation of bone morphogenetic protein 6 (BMP6). Examination of early-stage lung cancer patients confirmed upregulation of BMP6 in LKB1-mutant lung tumors. At the molecular level, we find that the canonical iron regulatory hormone Hepcidin is induced via BMP6 signaling upon LKB1 loss, where intact LKB1 kinase activity is necessary to maintain signaling homeostasis. Furthermore, pre-clinical studies in a novel Kras/Lkb1-mutant syngeneic mouse model show that potent growth suppression was achieved by inhibiting the ALK2/BMP6 signaling axis with single agents that are currently in clinical trials. We show that alterations in the iron homeostasis pathway are accompanied by simultaneous upregulation of ferroptosis protection proteins. Thus, LKB1 is sufficient to regulate both the 'gas' and 'breaks' to finely tune iron-regulated tumor progression.

13.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503208

RESUMO

The signaling pathway of transforming growth factor-beta (TGFß) plays crucial roles in the establishment of an immunosuppressive tumor microenvironment, making anti-TGFß agents a significant area of interest in cancer immunotherapy. However, the clinical translation of current anti-TGFß agents that target upstream cytokines and receptors remains challenging. Therefore, the development of small molecule inhibitors specifically targeting SMAD4, the downstream master regulator of TGFß pathway, would offer an alternative approach with significant therapeutic potential for anti-TGF-ß signaling. In this study, we present the development of a cell lysate-based multiplexed time-resolved fluorescence resonance energy transfer (TR-FRET) assay in an ultrahigh-throughput screening (uHTS) 1536-well plate format. This assay enables simultaneous monitoring of the protein-protein interaction (PPI) between SMAD4 and SMAD3, as well as the protein-DNA interaction (PDI) between SMADs and their consensus DNA binding motif. The multiplexed TR-FRET assay exhibits high sensitivity, allowing the dynamic analysis of the SMAD4-SMAD3-DNA complex at single amino acid resolution. Moreover, the multiplexed uHTS assay demonstrates robustness for screening small molecule inhibitors. Through a pilot screening of an FDA-approved and bioactive compound library, we identified gambogic acid and gambogenic acid as potential hit compounds. These proof-of-concept findings underscore the utility of our optimized multiplexed TR-FRET platform for large-scale screening to discover small molecule inhibitors that target the SMAD4-SMAD3-DNA complex as novel anti-TGFß signaling agents.

14.
Br J Cancer ; 129(5): 884-894, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474721

RESUMO

BACKGROUND: It is imperative to develop novel therapeutics to overcome chemoresistance, a significant obstacle in the clinical management of prostate cancer (PCa) and other cancers. METHODS: A phenotypic screen was performed to identify novel inhibitors of chemoresistant PCa cells. The mechanism of action of potential candidate(s) was investigated using in silico docking, and molecular and cellular assays in chemoresistant PCa cells. The in vivo efficacy was evaluated in mouse xenograft models of chemoresistant PCa. RESULTS: Nicardipine exhibited high selectivity and potency against chemoresistant PCa cells via inducing apoptosis and cell cycle arrest. Computational, molecular, and cellular studies identified nicardipine as a putative inhibitor of embryonic ectoderm development (EED) protein, and the results are consistent with a proposed mechanism of action that nicardipine destabilised enhancer of zeste homologue 2 (EZH2) and inhibited key components of noncanonical EZH2 signalling, including transducer and activator of transcription 3, S-phase kinase-associated protein 2, ATP binding cassette B1, and survivin. As a monotherapy, nicardipine effectively inhibited the skeletal growth of chemoresistant C4-2B-TaxR tumours. As a combination regimen, nicardipine synergistically enhanced the in vivo efficacy of docetaxel against C4-2 xenografts. CONCLUSION: Our findings provided the first preclinical evidence supporting nicardipine as a novel EED inhibitor that has the potential to be promptly tested in PCa patients to overcome chemoresistance and improve clinical outcomes.


Assuntos
Nicardipino , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Apoptose , Linhagem Celular Tumoral , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Nicardipino/farmacologia , Nicardipino/uso terapêutico , Complexo Repressor Polycomb 2 , Neoplasias da Próstata/tratamento farmacológico
15.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292860

RESUMO

Recent genome-wide association studies have revealed genetic risk factors for Alzheimer's disease (AD) that are exclusively expressed in microglia within the brain. A proteomics approach identified moesin (MSN), a FERM (four-point-one ezrin radixin moesin) domain protein, and the receptor CD44 as hub proteins found within a co-expression module strongly linked to AD clinical and pathological traits as well as microglia. The FERM domain of MSN interacts with the phospholipid PIP2 and the cytoplasmic tails of receptors such as CD44. This study explored the feasibility of developing protein-protein interaction inhibitors that target the MSN-CD44 interaction. Structural and mutational analyses revealed that the FERM domain of MSN binds to CD44 by incorporating a beta strand within the F3 lobe. Phage-display studies identified an allosteric site located close to the PIP2 binding site in the FERM domain that affects CD44 binding within the F3 lobe. These findings support a model in which PIP2 binding to the FERM domain stimulates receptor tail binding through an allosteric mechanism that causes the F3 lobe to adopt an open conformation permissive for binding. High-throughput screening of a chemical library identified two compounds that disrupt the MSN-CD44 interaction, and one compound series was further optimized for biochemical activity, specificity, and solubility. The results suggest that the FERM domain holds potential as a drug development target. The small molecule preliminary leads generated from the study could serve as a foundation for additional medicinal chemistry effort with the goal of controlling microglial activity in AD by modifying the MSN-CD44 interaction.

16.
Transl Oncol ; 34: 101707, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37271121

RESUMO

Chemoresistance is a major obstacle in the clinical management of metastatic, castration-resistant prostate cancer (PCa). It is imperative to develop novel strategies to overcome chemoresistance and improve clinical outcomes in patients who have failed chemotherapy. Using a two-tier phenotypic screening platform, we identified bromocriptine mesylate as a potent and selective inhibitor of chemoresistant PCa cells. Bromocriptine effectively induced cell cycle arrest and activated apoptosis in chemoresistant PCa cells but not in chemoresponsive PCa cells. RNA-seq analyses revealed that bromocriptine affected a subset of genes implicated in the regulation of the cell cycle, DNA repair, and cell death. Interestingly, approximately one-third (50/157) of the differentially expressed genes affected by bromocriptine overlapped with known p53-p21- retinoblastoma protein (RB) target genes. At the protein level, bromocriptine increased the expression of dopamine D2 receptor (DRD2) and affected several classical and non-classical dopamine receptor signal pathways in chemoresistant PCa cells, including adenosine monophosphate-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38 MAPK), nuclear factor kappa B  (NF-κB), enhancer of zeste homolog 2 (EZH2), and survivin. As a monotherapy, bromocriptine treatment at 15 mg/kg, three times per week, via the intraperitoneal route significantly inhibited the skeletal growth of chemoresistant C4-2B-TaxR xenografts in athymic nude mice. In summary, these results provided the first preclinical evidence that bromocriptine is a selective and effective inhibitor of chemoresistant PCa. Due to its favorable clinical safety profiles, bromocriptine could be rapidly tested in PCa patients and repurposed as a novel subtype-specific treatment to overcome chemoresistance.

17.
Biomolecules ; 13(6)2023 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-37371517

RESUMO

Interferon-induced transmembrane proteins (IFITMs) block the fusion of diverse enveloped viruses, likely through increasing the cell membrane's rigidity. Previous studies have reported that the antiviral activity of the IFITM family member, IFITM3, is antagonized by cell pretreatment with rapamycin derivatives and cyclosporines A and H (CsA and CsH) that promote the degradation of IFITM3. Here, we show that CsA and CsH potently enhance virus fusion with IFITM1- and IFITM3-expressing cells by inducing their rapid relocalization from the plasma membrane and endosomes, respectively, towards the Golgi. This relocalization is not associated with a significant degradation of IFITMs. Although prolonged exposure to CsA induces IFITM3 degradation in cells expressing low endogenous levels of this protein, its levels remain largely unchanged in interferon-treated cells or cells ectopically expressing IFITM3. Importantly, the CsA-mediated redistribution of IFITMs to the Golgi occurs on a much shorter time scale than degradation and thus likely represents the primary mechanism of enhancement of virus entry. We further show that rapamycin also induces IFITM relocalization toward the Golgi, albeit less efficiently than cyclosporines. Our findings highlight the importance of regulation of IFITM trafficking for its antiviral activity and reveal a novel mechanism of the cyclosporine-mediated modulation of cell susceptibility to enveloped virus infection.


Assuntos
Antivirais , Ciclosporinas , Antivirais/farmacologia , Antivirais/metabolismo , Interferons , Complexo de Golgi/metabolismo , Sirolimo
18.
Nat Commun ; 14(1): 2748, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173315

RESUMO

Phosphatidylcholine transfer protein (PC-TP; synonym StarD2) is a soluble lipid-binding protein that transports phosphatidylcholine (PC) between cellular membranes. To better understand the protective metabolic effects associated with hepatic PC-TP, we generated a hepatocyte-specific PC-TP knockdown (L-Pctp-/-) in male mice, which gains less weight and accumulates less liver fat compared to wild-type mice when challenged with a high-fat diet. Hepatic deletion of PC-TP also reduced adipose tissue mass and decreases levels of triglycerides and phospholipids in skeletal muscle, liver and plasma. Gene expression analysis suggest that the observed metabolic changes are related to transcriptional activity of peroxisome proliferative activating receptor (PPAR) family members. An in-cell protein complementation screen between lipid transfer proteins and PPARs uncovered a direct interaction between PC-TP and PPARδ that was not observed for other PPARs. We confirmed the PC-TP- PPARδ interaction in Huh7 hepatocytes, where it was found to repress PPARδ-mediated transactivation. Mutations of PC-TP residues implicated in PC binding and transfer reduce the PC-TP-PPARδ interaction and relieve PC-TP-mediated PPARδ repression. Reduction of exogenously supplied methionine and choline reduces the interaction while serum starvation enhances the interaction in cultured hepatocytes. Together our data points to a ligand sensitive PC-TP- PPARδ interaction that suppresses PPAR activity.


Assuntos
Fígado Gorduroso , PPAR delta , Masculino , Animais , Camundongos , PPAR delta/genética , Fosfatidilcolinas/metabolismo , Ligantes , Fígado Gorduroso/genética , Fígado Gorduroso/prevenção & controle , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Dieta
19.
Alzheimers Dement (N Y) ; 9(2): e12394, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215505

RESUMO

Alzheimer's disease (AD) drug discovery has focused on a set of highly studied therapeutic hypotheses, with limited success. The heterogeneous nature of AD processes suggests that a more diverse, systems-integrated strategy may identify new therapeutic hypotheses. Although many target hypotheses have arisen from systems-level modeling of human disease, in practice and for many reasons, it has proven challenging to translate them into drug discovery pipelines. First, many hypotheses implicate protein targets and/or biological mechanisms that are under-studied, meaning there is a paucity of evidence to inform experimental strategies as well as high-quality reagents to perform them. Second, systems-level targets are predicted to act in concert, requiring adaptations in how we characterize new drug targets. Here we posit that the development and open distribution of high-quality experimental reagents and informatic outputs-termed target enabling packages (TEPs)-will catalyze rapid evaluation of emerging systems-integrated targets in AD by enabling parallel, independent, and unencumbered research.

20.
bioRxiv ; 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36993676

RESUMO

Although high-dose, multi-agent chemotherapy has improved leukemia survival rates in recent years, treatment outcomes remain poor in high-risk subsets, including acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) in infants. Development of new, more effective therapies for these patients is therefore an urgent, unmet clinical need. To address this challenge, we developed a nanoscale combination drug formulation that exploits ectopic expression of MERTK tyrosine kinase and dependency on BCL-2 family proteins for leukemia cell survival in pediatric AML and MLL- rearranged precursor B-cell ALL (infant ALL). In a novel, high-throughput combination drug screen, the MERTK/FLT3 inhibitor MRX-2843 synergized with venetoclax and other BCL-2 family protein inhibitors to reduce AML cell density in vitro . Neural network models based on drug exposure and target gene expression were used to identify a classifier predictive of drug synergy in AML. To maximize the therapeutic potential of these findings, we developed a combination monovalent liposomal drug formulation that maintains ratiometric drug synergy in cell-free assays and following intracellular delivery. The translational potential of these nanoscale drug formulations was confirmed in a genotypically diverse set of primary AML patient samples and both the magnitude and frequency of synergistic responses were not only maintained but were improved following drug formulation. Together, these findings demonstrate a systematic, generalizable approach to combination drug screening, formulation, and development that maximizes therapeutic potential, was effectively applied to develop a novel nanoscale combination therapy for treatment of AML, and could be extended to other drug combinations or diseases in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA